Experimental and numerical study on ventilated cavitation of high-speed projectile

Author:

Wang YongjiuORCID,Du TezhuanORCID,Huang JianORCID,Qiu Rundi,Wang YiweiORCID,Zhou JifuORCID

Abstract

In this study, ventilated cavitating flow characteristics around an axisymmetric projectile are investigated by combining experiments and numerical simulations. Experiments were carried out with a Split–Hopkinson pressure bar launch system and the pressure-equaling exhaust technology. Modular projectiles are designed to experimentally investigate the influence of head shape and ventilatory volume on flow characteristics. Large eddy simulation model is applied to obtain more flow field information. Compared with the conical head projectile, the hemispherical head projectile has a thinner attached cavity and more local detachment of the cavity. The statistical structure of the velocity and pressure fluctuations are analyzed by combining histograms and Q–Q diagrams. The results show that the pressure drag is dominant in the total drag and the periodic pulsation of the tail cavity and the stable vortex structure at the tail cause the variation of drag. The larger cavity volume changes the actual shape of the projectile, making the drag of the conical head projectile higher. The evolution characteristics of the cavitating flow field around the projectile with different ventilatory volumes are obtained, and the relationship between pressure fluctuation and chamber volume is derived. It is found that the reentrant jet causes a reverse flow at the nozzle, which leads to local pressure rise at the same interval. The above research work could contribute to the design and flow control of the ventilated cavity body.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3