Optimal thrust efficiency for a tandem wing in forward flight using varied hindwing kinematics of a damselfly

Author:

Lai Yu-Hsiang12ORCID,Chang Sheng-Kai1ORCID,Lan Bluest1ORCID,Hsu Kuan-Lun1ORCID,Yang Jing-Tang1ORCID

Affiliation:

1. Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan

2. Department of Mechanical and Aerospace Engineering, Chung-Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan

Abstract

We reveal the hindwing kinematics of a damselfly that are optimal for the thrust efficiency, which is a major concern of a bio-inspired micro-aerial vehicle. The parameters of the hindwing kinematics include stroke-plane angle, rotational duration, and wing phase. We developed a numerical self-propulsion model to investigate the thrust efficiency. The correlation analysis and optimal analysis were used to investigate the relation between varied hindwing kinematics and thrust efficiency. The results show that the optimal wing kinematics of the hindwing occur at a large stroke-plane angle and a small rotational duration in which the thrust efficiency might increase up to 22% compared with the original motion of the hindwing. The stroke-plane angle is highly positively correlated with thrust efficiency, whereas the rotational duration is moderately negatively correlated; the wing phase has the least correlation. The flow-field analysis indicates that a large stroke-plane angle combined with a small rotational duration has a weak forewing–hindwing interaction, generating a small resulting force on the hindwing, but the force comprises a small negative horizontal force, which hence increases the thrust efficiency. In a flight strategy for a micro-aerial vehicle, a large stroke-plane angle combined with a small rotational duration yields an optimal thrust efficiency, which is suitable for a flight of long duration. A small stroke-plane angle combined with a large rotation is suitable for hovering flight because it leads to a large negative horizontal force and a small vertical force. This work hence provides insight into the design of a tandem-wing micro-aerial vehicle.

Funder

National Taiwan University

Ministry of Science and Technology, Taiwan

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3