Evolution of superconductivity dependence on substrate temperature with thickness of Fe(Se,Te) coated conductors deposited on metal tapes

Author:

Ye Jiachao1ORCID,Mou Shaojing1,Zhu Rongji1,Liu Linfei1,Li Yijie1

Affiliation:

1. Key Lab of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, People’s Republic of China

Abstract

Fe(Se,Te) films of different thicknesses were deposited on metal tapes by pulsed laser deposition at different substrate temperatures. It is found that the substrate temperature dependence of superconductivity changes with the Fe(Se,Te) film thickness. When fabricating thin Fe(Se,Te) films with a thickness of about 150 nm, moderate substrate temperatures are conducive to balancing the influence of texture and stoichiometry on superconductivity, contributing to the obtainment of good superconductivity. When the Fe(Se,Te) films’ thickness is about 300 nm, the optimal substrate temperatures are lowered due to the determination of film superconductivity by the inhomogeneity of longitudinal chalcogen distribution via the cooperation of Te loss in the long-term-ablated target and the attraction of metal ions in the buffer layer. In addition, with a further increase in thickness from 300 to 600 nm, the self-field critical current of thick Fe(Se,Te) films continuously increases, but the critical current density increases first and then decreases, which is thought to be a result of the misoriented grains or non-superconducting phase due to the large deviation between the actual deposition temperature and the set substrate temperature, and the Se excess in the film. In addition, the 450-nm-thick Fe(Se,Te) film exhibits excellent self-field and in-field performances at 4.2 K: 1.308 MA/cm2 at self-field and over 0.5 MA/cm2 at 9 T. Point pinning, which is the local lattice disturbance randomly distributed in the film observed by transmission electron microscopy, dominates over the entire temperature range.

Funder

National Key R&D Program of China

Natural Science Foundation of China

Strategic Priority Research Program of Chinese Academy of Sciences

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3