Estimation of bubble cavitation rates in a symmetrical Lennard-Jones mixture by NVT seeding simulations

Author:

Lamas Cintia P.12ORCID,Sanz Eduardo1ORCID,Vega Carlos1ORCID,Noya Eva G.2ORCID

Affiliation:

1. Departamento de Química-Física I (Unidad de I+D+i asociada al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid 1 , 28040 Madrid, Spain

2. Instituto de Química Física Rocasolano, CSIC 2 , C/ Serrano 119, 28006 Madrid, Spain

Abstract

The liquid–vapor transition starts with the formation of a sufficiently large bubble in the metastable liquid to trigger the phase transition. Understanding this process is of fundamental and practical interest, but its study is challenging because it occurs over timescales that are too short for experiments but too long for simulations. The seeding method estimates cavitation rates by simulating a liquid in which a bubble is inserted, thus avoiding the long times needed for its formation. In one-component systems, in the NpT ensemble, the bubble grows or redissolves depending on whether its size is larger or smaller than the critical size, whereas in the NVT ensemble (i.e., at constant number of particles, volume, and temperature), the critical bubble can remain in equilibrium. Provided that a good criterion is used to determine the bubble size, this method, combined with the Classical Nucleation Theory (CNT), gives cavitation rates consistent with those obtained by methods independent of the CNT. In this work, the applicability of NVT seeding to homogeneous cavitation in mixtures is demonstrated, focusing on a partially miscible symmetrical binary Lennard-Jones (LJ) liquid at a temperature within the mixing regime. At the same stretching pressure, cavitation rates are higher in the binary mixture than in the pure liquid due to the lower interfacial free energy of the mixture. Curiously, the cost of creating a bubble is similar in the pure and binary LJ liquids at the same metastability, Δμ/Δμspin, with Δμ being the difference in chemical potential between the metastable liquid and coexistence, and Δμspin between the spinodal and coexistence.

Funder

Agencia Estatal de Investigación

Ministerio de Educación y Formación Profesional

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Reference75 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3