Compact optomechanical accelerometers for use in gravitational wave detectors

Author:

Hines A.1ORCID,Nelson A.1ORCID,Zhang Y.1ORCID,Valdes G.1ORCID,Sanjuan J.1ORCID,Guzman F.1ORCID

Affiliation:

1. Aerospace Engineering and Physics , Texas A&M University, College Station, Texas 77843, USA

Abstract

We present measurements of an optomechanical accelerometer for monitoring low-frequency noise in gravitational wave detectors, such as ground motion. Our device measures accelerations by tracking the test-mass motion of a 4.7 Hz mechanical resonator using a heterodyne interferometer. This resonator is etched from monolithic fused silica, an under-explored design in low-frequency sensors, allowing a device with a noise floor competitive with existing technologies but with a lighter and more compact form. In addition, our heterodyne interferometer is a compact optical assembly that can be integrated directly into the mechanical resonator wafer to further reduce the overall size of our accelerometer. We anticipate this accelerometer to perform competitively with commercial seismometers, and benchtop measurements show a noise floor reaching 82 pico-g Hz−1/2 sensitivities at 0.4 Hz. Furthermore, we present the effects of air pressure, laser fluctuations, and temperature to determine the stability requirements needed to achieve thermally limited measurements.

Funder

National Geospatial-Intelligence Agency

National Science Foundation

National Aeronautics and Space Administration

Jet Propulsion Laboratory

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Reference21 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Calibrating nonlinearity coefficients of a nano-g accelerometer by dual-frequency excitation on a shaker;Measurement;2024-02

2. Optical Interferometric MEMS Accelerometers;Laser & Photonics Reviews;2023-12-02

3. A construction method of the quasi-monolithic compact interferometer based on UV-adhesive bonding;Review of Scientific Instruments;2023-07-01

4. Low frequency inertial sensing;2023 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL);2023-03-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3