The effects of metal oxides doping on the surface stability of In2O3 for CO2 hydrogenation

Author:

Xu Xingtang1ORCID,Li Yanwei1,Sun Guang1,Cao Jianliang1ORCID,Wang Yan2ORCID,Qin Xulong3

Affiliation:

1. School of Chemistry and Chemical Engineering, Henan Polytechnic University 1 , Jiaozuo 454000, China

2. College of Safety Science and Engineering, Henan Polytechnic University 2 , Jiaozuo 454000, China

3. School of Chemistry and Chemical Engineering, Shandong University of Technology 3 , Zibo 255049, China

Abstract

The significance of maintaining the surface stability of the In2O3 catalyst in the conversion of CO2 to methanol through hydrogenation cannot be overstated. To improve surface stability, doping with metal oxides is usually employed. To explore high-efficiency In2O3 based catalysts, density functional theory calculations were utilized to explore the effects of doping CuO, Co2O3, NiO, TiO2, HfO2, Nb2O3, Ta2O5, and CeO2 on the stability of the In2O3(110) surface. It was found that in a CO atmosphere, the crucial step in determining the creation of oxygen vacancies on the In2O3 plane occurred during the desorption of CO2 from the vacancy location. The results indicate that doping CuO, Co2O3, NiO, Nb2O3, Ta2O5, and CeO2 on the In2O3(110) surface promotes the reduction process through the reaction of CO with the O atoms on the surface, resulting in reduced surface stability. Conversely, the doping of Ti and Hf can raise the reaction energy barriers for CO reacting with the O atoms on the surface and enhance CO2 molecule adsorption on vacant sites, thereby suggesting the potential of TiO2 and HfO2 as effective modifiers to improve the efficiency and durability of the In2O3 catalyst. Furthermore, it is crucial to enhance its stability by modifying the density of the electron cloud or Fermi level of the In2O3 catalyst.

Funder

Natural Science Foundation of Henan Province

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3