Reaction‐Induced Metal‐Metal Oxide Interactions in Pd‐In2O3/ZrO2 Catalysts Drive Selective and Stable CO2 Hydrogenation to Methanol

Author:

Araújo Thaylan Pinheiro1,Morales‐Vidal Jordi23ORCID,Giannakakis Georgios1ORCID,Mondelli Cecilia1ORCID,Eliasson Henrik4ORCID,Erni Rolf4ORCID,Stewart Joseph A.5ORCID,Mitchell Sharon1ORCID,López Núria2ORCID,Pérez‐Ramírez Javier1ORCID

Affiliation:

1. Institute of Chemical and Bioengineering Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland

2. Institute of Chemical Research of Catalonia (ICIQ-CERCA) The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain

3. Universitat Rovira i Virgili Av. Catalunya 35 43002 Tarragona Spain

4. Electron Microscopy Center Empa Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 8600 Dübendorf Switzerland

5. TotalEnergies OneTech Belgium Zone Industrielle Feluy C 7181 Seneffe Belgium

Abstract

AbstractTernary Pd‐In2O3/ZrO2 catalysts exhibit technological potential for CO2‐based methanol synthesis, but developing scalable systems and comprehending complex dynamic behaviors of the active phase, promoter, and carrier are key for achieving high productivity. Here, we show that the structure of Pd‐In2O3/ZrO2 systems prepared by wet impregnation evolves under CO2 hydrogenation conditions into a selective and stable architecture, independent of the order of addition of Pd and In phases on the zirconia carrier. Detailed operando characterization and simulations reveal a rapid restructuring driven by the metal‐metal oxide interaction energetics. The proximity of InPdx alloy particles decorated by InOx layers in the resulting architecture prevents performance losses associated with Pd sintering. The findings highlight the crucial role of reaction‐induced restructuring in complex CO2 hydrogenation catalysts and offer insights into the optimal integration of acid‐base and redox functions for practical implementation.

Funder

NCCR Catalysis

Ministerio de Educación y Formación Profesional

Publisher

Wiley

Subject

General Chemistry,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3