Ultra-short-term wind speed prediction based on deep spatial-temporal residual network

Author:

Liang Xinhao1ORCID,Hu Feihu1ORCID,Li Xin1ORCID,Zhang Lin2,Feng Xuan1ORCID,Gunmi Mohammad Abu1ORCID

Affiliation:

1. State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiao Tong University 1 , Xi'an 710049, Shaanxi Province, China

2. State Grid Shaanxi Electric Power Company 2 , Xi'an 710000, Shaanxi Province, China

Abstract

To maintain power system stability, accurate wind speed prediction is essential. Taking into account the temporal and spatial characteristics of wind speed in an integrated manner can improve the accuracy of wind speed prediction. Considering complex nonlinear spatial factors such as wake effects in wind farms, a deep residual network is valuable in predicting wind speed with a high degree of accuracy. Wind speed data are typically a time series that requires feature extraction and attribute modeling, while maintaining signal integrity. In order to measure the importance of different temporal attributes and effectively aggregate temporal and spatial features, we used a parameter fusion matrix. We introduce a deep spatial-temporal residual network (DST-ResNet) for wind speed prediction that extracts the spatial-temporal characteristics, which can forecast the future wind speed of a multi-site wind farm in a particular region. In this model, wind speed data's nearby property and periodic property are separately modeled using a residual network. The outputs of the two temporal components are dynamically aggregated using a parameter fusion matrix and then fused with additional meteorological features to achieve wind speed prediction. Based on wind data from the National Renewable Energy Laboratory, our experiments show that the proposed DST-ResNet improves prediction accuracy by 8.90%.

Publisher

AIP Publishing

Subject

Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3