Assessment of Wind Energy Resources in Jordan Using Different Optimization Techniques

Author:

Al-Mhairat BasharORCID,Al-Quraan AymanORCID

Abstract

Wind energy has become one of the world’s most renewable energy sources in recent years. It is regarded as a clean energy source because it produces no greenhouse gas emissions. The assessment of wind energy resources is an important step in the development of any wind energy conversion system (WECS). As a result, this article examines the wind energy potential of nine Jordanian wind locations: Queen Alia Airport, Civil Amman Airport, King Hussein Airport, Irbid, Mafraq, Ma’an, Ghor Al Safi, Safawi, and Irwaished. The available wind speed data were implemented using three statistical distribution models, Weibull, Rayleigh, and Gamma distributions, and one traditional estimation method, the Maximum Likelihood Method (MLM). Three optimization techniques were used to assign parameters to each distribution model: Particle Swarm Optimization (PSO), Grey Wolf Optimizer (GWO), and Whale Optimization Algorithm (WOA). To determine the optimal distribution model, the performance of these distribution models was tested. According to the findings, King Hussein Airport features the highest wind power density, followed by Queen Alia Airport, while Irbid features the lowest, followed by Ghor Al Safi.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference60 articles.

1. Renewables 2020 Global Status Report,2020

2. Annual Reporthttps://www.nepco.com.jo/store/DOCS/web/2019_en.pdf.

3. Wind Energy: Fundamentals, Resource Analysis and Economics;Sathyajith,2006

4. Wind resource assessment in Algeria

5. Wind Speed Data Analysis Using Weibull and Rayleigh Distribution Functions, Case Study: Five Cities Northern Morocco

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3