Abstract
Wind energy has become one of the world’s most renewable energy sources in recent years. It is regarded as a clean energy source because it produces no greenhouse gas emissions. The assessment of wind energy resources is an important step in the development of any wind energy conversion system (WECS). As a result, this article examines the wind energy potential of nine Jordanian wind locations: Queen Alia Airport, Civil Amman Airport, King Hussein Airport, Irbid, Mafraq, Ma’an, Ghor Al Safi, Safawi, and Irwaished. The available wind speed data were implemented using three statistical distribution models, Weibull, Rayleigh, and Gamma distributions, and one traditional estimation method, the Maximum Likelihood Method (MLM). Three optimization techniques were used to assign parameters to each distribution model: Particle Swarm Optimization (PSO), Grey Wolf Optimizer (GWO), and Whale Optimization Algorithm (WOA). To determine the optimal distribution model, the performance of these distribution models was tested. According to the findings, King Hussein Airport features the highest wind power density, followed by Queen Alia Airport, while Irbid features the lowest, followed by Ghor Al Safi.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Reference60 articles.
1. Renewables 2020 Global Status Report,2020
2. Annual Reporthttps://www.nepco.com.jo/store/DOCS/web/2019_en.pdf.
3. Wind Energy: Fundamentals, Resource Analysis and Economics;Sathyajith,2006
4. Wind resource assessment in Algeria
5. Wind Speed Data Analysis Using Weibull and Rayleigh Distribution Functions, Case Study: Five Cities Northern Morocco
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献