Clocked molecular quantum-dot cellular automata circuits tolerate unwanted external electric fields

Author:

Cong Peizhong1ORCID,Blair Enrique P.1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Baylor University, Waco, Texas 76798, USA

Abstract

Quantum-dot cellular automata (QCA) may provide low-power, general-purpose computing in the post-CMOS era. A molecular implementation of QCA features nanometer-scale devices and may support [Formula: see text]THz switching speeds at room-temperature. Here, we explore the ability of molecular QCA circuits to tolerate unwanted applied electric fields, which may come from a variety of sources. One likely source of strong unwanted electric fields may be electrodes recently proposed for the write-in of classical bits to molecular QCA input circuits. Previous models have shown that the input circuits are sensitive to the applied field, and a coupled QCA wire can successfully transfer the input bit to downstream circuits despite strong applied fields. However, the ability of other QCA circuits to tolerate an applied field has not yet been demonstrated. Here, we study the robustness of various QCA circuits by calculating their ground state responses in the presence of an applied field. To do this, a circuit is built from several QCA molecules, each described as a two-state system. A circuit Hamiltonian is formed and diagonalized. All pairwise interactions between cells are considered, along with all correlations. An examination of the ground state shows that these QCA circuits may indeed tolerate strong unwanted electric fields. We also show that circuit immunity to the dominant unwanted field component may be obtained by choosing the orientation of constituent molecules. This suggests that relatively large electrodes used for bit write-in to molecular QCA need not disrupt the operation of nearby QCA circuits. The circuits may tolerate significant electric fields from other sources as well.

Funder

Office of Naval Research

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3