A random sequential adsorption model for the irreversible binding of Tenebrio molitor antifreeze protein to ice crystals

Author:

Guo Tinghe1ORCID,Zhang Nan1,Li Yannan1,Zhang Luqiang1,Wang Jun1ORCID,Zhang Lirong1ORCID,Liu Junjie1ORCID

Affiliation:

1. School of Physical Science and Technology, Inner Mongolia Key Laboratory of Ion-beam Bioengineering, Inner Mongolia University , Hohhot 010021, China

Abstract

A class of proteins known as antifreeze proteins (AFPs) appear in some organisms, allowing them to survive in low-temperature environments. These AFPs irreversibly adsorb to the surfaces of ice crystals and reduce the freezing temperature without significantly affecting the equilibrium melting point. Ice crystal growth is inhibited in the temperature gap between the melting point and the non-equilibrium freezing point, referred to as thermal hysteresis (TH). The irreversible adsorption of AFPs on the surfaces of ice crystals has been questioned because it is not consistent with the concentration dependence of the TH activity obtained from experimental studies. In this study, based on adsorption–inhibition theory, a random sequential adsorption model of AFPs was used to investigate the irreversible adsorption of hyperactive AFPs that have been found in the yellow mealworm beetle Tenebrio molitor (TmAFPs). The occupied fractions covered by TmAFP on ice crystal surfaces were obtained. The time and concentration dependence of the TH activity of TmAFP was analyzed. The theoretical results obtained from this model were consistent with reported experimental data. This work provides ideas and a theoretical basis for understanding the TH activity during the irreversible adsorption of AFPs.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3