Antifreeze Proteins of Teleost Fishes

Author:

Fletcher Garth L123,Hew Choy L123,Davies Peter L123

Affiliation:

1. Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, Newfoundland A1C 5S7, Canada;

2. Department of Biological Sciences, The National University of Singapore, 10 Kent Ridge Cres., 119260; Singapore

3. Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada;

Abstract

▪ Abstract  Marine teleosts at high latitudes can encounter ice-laden seawater that is approximately 1°C colder than the colligative freezing point of their body fluids. They avoid freezing by producing small antifreeze proteins (AFPs) that adsorb to ice and halt its growth, thereby producing an additional non-colligative lowering of the freezing point. AFPs are typically secreted by the liver into the blood. Recently, however, it has become clear that AFP isoforms are produced in the epidermis (skin, scales, fin, and gills) and may serve as a first line of defense against ice propagation into the fish. The basis for the adsorption of AFPs to ice is something of a mystery and is complicated by the extreme structural diversity of the five antifreeze types. Despite the recent acquisition of several AFP three-dimensional structures and the definition of their ice-binding sites by mutagenesis, no common ice-binding motif or even theme is apparent except that surface-surface complementarity is important for binding. The remarkable diversity of antifreeze types and their seemingly haphazard phylogenetic distribution suggest that these proteins might have evolved recently in response to sea level glaciation occurring just 1–2 million years ago in the northern hemisphere and 10–30 million years ago around Antarctica. Not surprisingly, the expression of AFP genes from different origins can also be quite dissimilar. The most intensively studied system is that of the winter flounder, which has a built-in annual cycle of antifreeze expression controlled by growth hormone (GH) release from the pituitary in tune with seasonal cues. The signal transduction pathway, transcription factors, and promoter elements involved in this process are just beginning to be characterized.

Publisher

Annual Reviews

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3