Mobility and quasi-ballistic charge carrier transport in graphene field-effect transistors

Author:

Harrysson Rodrigues Isabel1ORCID,Rorsman Niklas1ORCID,Vorobiev Andrei1ORCID

Affiliation:

1. Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg, Sweden

Abstract

The optimization of graphene field-effect transistors (GFETs) for high-frequency applications requires further understanding of the physical mechanisms concerning charge carrier transport at short channel lengths. Here, we study the charge carrier transport in GFETs with gate lengths ranging from 2 [Formula: see text]m down to 0.2 [Formula: see text]m by applying a quasi-ballistic transport model. It is found that the carrier mobility, evaluated via the drain–source resistance model, including the geometrical magnetoresistance effect, is more than halved with decreasing the gate length in the studied range. This decrease in mobility is explained by the impact of ballistic charge carrier transport. The analysis allows for evaluation of the characteristic length, a parameter of the order of the mean-free path, which is found to be in the range of 359–374 nm. The mobility term associated with scattering mechanisms is found to be up to 4456 cm[Formula: see text]/Vs. Transmission formalism treating the electrons as purely classical particles allows for the estimation of the probability of charge carrier transport without scattering events. It is shown that at the gate length of 2 [Formula: see text]m, approximately 20% of the charge carriers are moving without scattering, while at the gate length of 0.2 [Formula: see text]m, this number increases to above 60%.

Funder

EU Horizon 2020, Graphene Core 3

Barbro Osher Pro Suecia Foundation

Göran Wallbergs minnesfond

A & LE Landahls minnesfond

LM Ericsson research foundation

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3