Affiliation:
1. Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom
Abstract
In this work, a pair of sweeping jet actuators is installed underneath the endplate of a slanted-base cylinder at ReD = 200 000. The sweeping jets form a 30° inclined angle with the endplate and are placed at different streamwise locations, and their strength is varied with a momentum coefficient, C μ, ranging from 3.8 × 10−3 to 6.0 × 10−2. For all the cases examined in this paper, it is found that while a higher C μ produces a higher drag reduction, the flow control energy efficiency decreases rapidly as C μ increases. A net energy saving is achieved when C μ is less than 0.01, and the highest energy efficiency obtained in the present study is 2.8% when the actuator pair is placed at the most upstream location tested. The drag reduction is attributed to the reaction force and an increase in the surface pressure force acting on the endplate produced by the jet pair. The contribution from the former constitutes an increasing proportion of the total drag reduction as C μ increases leading to lower energy efficiency in flow control. Depending on the relative positions between the trajectory of the sweeping jet and afterbody vortex, sweeping jets are not only capable of altering the surface pressure distributions via directly imposing a footprint of high pressure on the surface, but also affecting the roll-up of the afterbody vortex and/or reducing its strength via injecting turbulence into the afterbody vortex.
Funder
China Scholarship Council
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献