An optimal hybrid control strategy for supporting frequency regulation considering fatigue load mitigation of wind turbines

Author:

Fu Lei1ORCID,Deng Xi1ORCID,Liu Jia1ORCID,Zhang Hao1ORCID,Weng Zhengqiu2ORCID,Cheng Shuhao1ORCID,Xu Fang1ORCID,Ouyang Jing1ORCID

Affiliation:

1. College of Mechanical Technology, Zhejiang University of Technology 1 , Hangzhou 310023, People's Republic of China

2. College of Data Science and Artificial Intelligence, Wenzhou University of Technology 2 , Wenzhou 325000, People's Republic of China

Abstract

Frequency regulation of wind turbines can improve the stability of the power system. However, it would cause generator torque fluctuation, increasing the risk of fatigue load. Previous research works were restricted to inertial and droop responses. Less attention has been paid to striking a balance between frequency regulation and fatigue load. To overcome these, a hybrid control strategy is proposed to consider both frequency response characteristic and fatigue load mitigation. First, a small signal linearization model is built to reveal the impact of the correlation mechanism of frequency regulation on drive train torque load. Second, a multivariable cost function is constructed to optimize the proportional integral (PI) controller, which combines the total fluctuation with the dispersion of the fatigue load and frequency. Then, a hybrid controller based on PI control optimized by particle swarm optimization algorithm and active disturbance rejection control is designed to restrain rapid frequency changes as well as fatigue torque fluctuation simultaneously. Several experiments are performed to verify the significance of the proposed method under different scenarios. Compared with the existing methods, the proposed hybrid control exhibits superiority in improving frequency response and fatigue load mitigation.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3