Low frequency photothermal excitation of AFM microcantilevers

Author:

Deolia Akshay1ORCID,Raman Arvind1,Wagner Ryan1ORCID

Affiliation:

1. School of Mechanical Engineering, Purdue University , West Lafayette, Indiana 47907, USA

Abstract

Photothermal excitation at frequencies below the mechanical resonance of the atomic force microscopy (AFM) microcantilever can be utilized in force modulation microscopy, fast force displacement curve acquisition, and tip-based mass spectroscopy. To understand the microcantilever bending response in these modes, accurate models of the thermoelastic response of the AFM microcantilever are needed. We study the sub-resonance photothermal vibrational response of coated and uncoated AFM microcantilevers as a function of laser modulation frequency and spot location. The sub-resonance microcantilever response shows distinct thermoelastic regimes. Below the microcantilever's thermal roll-off frequency, the vibration amplitude is mostly constant. Past this frequency, the vibration amplitude decreases with increasing frequency. At modulation frequencies below the thermal roll-off frequency, the most efficient photothermal laser spot to excite harmonic motion is near the free end of both coated and uncoated microcantilevers. For the tested coated microcantilevers, the most efficient photothermal laser location migrates from near the free end of the microcantilever to near the fixed end as modulation frequency increases. For the tested uncoated microcantilever, the most efficient photothermal laser location remains unchanged at the tested frequencies. To predict the bending response of the coated microcantilever, a bilayer bending model is implemented. At low frequencies, this model underpredicts the bending response compared to experiments by up to 90%. This may be due to neglecting microcantilever bending contributed by a through-thickness temperature gradient. Our results illustrate different aspects of the frequency-dependent photothermal laser spot optimization that can guide users to maximizing microcantilever response to a given input power.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3