Wideband Magnetic Excitation System for Atomic Force Microscopy Cantilevers with Megahertz-Order Resonance Frequency

Author:

Hirata Kaito,Igarashi Takumi,Suzuki Keita,Miyazawa Keisuke,Fukuma Takeshi

Abstract

AbstractSmall cantilevers with a megahertz-order resonance frequency provide excellent sensitivity and speed in liquid-environment atomic force microscopy (AFM). However, stable and accurate oscillation control of a small cantilever requires the photothermal excitation, which has hindered their applications to the studies on photo-sensitive materials. Here, we develop a magnetic excitation system with a bandwidth wider than 4 MHz, enabling a light-free excitation of small cantilevers. In the system, a cantilever with a magnetic bead is driven by a magnetic field generated by a coil. In the coil driver, a differentiation circuit is used for compensating the frequency dependence of the coil impedance and keeping the current constant. By implementing several differentiation circuits with different frequency ranges, we enable to drive various cantilevers having different resonance frequencies with sufficient excitation efficiency. In contrast to the conventional coil driver with a closed-loop circuit, the developed one consists of an open-loop circuit and hence can be stably operated regardless of the coil design. With the developed system, atomic-resolution imaging of mica in liquid using a small cantilever with a megahertz-order resonance frequency is demonstrated. This development should lead to the future applications of AFM with small cantilevers to the studies on various photo-sensitive materials and phenomena.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference57 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3