Affiliation:
1. Key Laboratory of Polar Materials and Devices (MOE), Ministry of Education, Department of Electronics, East China Normal University, Shanghai 200241, China
2. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
Abstract
Two-dimensional (2D) valleytronic materials are both fundamentally intriguing and practically appealing to explore novel physics and design next-generation devices. However, traditional control means such as optic pumping or magnetic field cannot meet the demands of modern electron devices for miniaturization, low-dissipation, and non-volatility. Thus, it is attractive to combine the ferroelectric property with valley property in a single compound. In this paper, the recent progress of ferroelectric-valley coupling is reviewed. First, we briefly recall the development of valleytronics in the past several years. Then, various structures demonstrating ferroelectric-valley coupling, including heterostructures and intrinsic materials, are introduced. Subsequently, we describe ferroelectric-valley coupling in sliding and adsorption system and the unconventional ferroelectricity in the moiré system. Finally, we discuss the research status and outlook. We hope that this perspective will be helpful to bridge the gap between valleytronics and ferroelectrics in 2D materials and inspire further exciting findings.
Funder
National Key Research and Development Program of China
the NSF of China
Shanghai Science and Technology Innovation Action Plan
Subject
General Physics and Astronomy
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献