Valleytronics in two-dimensional magnetic materials

Author:

Luo ChaoboORCID,Huang ZongyuORCID,Qiao Hui,Qi XiangORCID,Peng XiangyangORCID

Abstract

Abstract Valleytronics uses valleys, a novel quantum degree of freedom, to encode information. It combines other degrees of freedom, such as charge and spin, to produce a more comprehensive, stable, and efficient information processing system. Valleytronics has become an intriguing field in condensed matter physics due to the emergence of new two-dimensional materials in recent years. However, in nonmagnetic valleytronic materials, the valley polarization is transient and the depolarization occurs once the external excitation is withdrawn. Introduction of magnetic field is an effective approach to realizing the spontaneous valley polarization by breaking the time-reversal symmetry. In hexagonal magnetic valleytronic materials, the inequivalent valleys at the K and –K(K′) Dirac cones have asymmetric energy gaps and Berry curvatures. The time-reversal symmetry in nonmagnetic materials can be broken by applying an external magnetic field, adding a magnetic substrate or doping magnetic atoms. Recent theoretical studies have demonstrated that valleytronic materials with intrinsic ferromagnetism, now termed as ferrovalley materials, exhibit spontaneous valley polarization without the need for external fields to maintain the polarization. The coupling of the valley and spin degrees of freedom enables stable and unequal distribution of electrons in the two valleys and thus facilitating nonvolatile information storage. Hence, ferrovalley materials are promising materials for valleytronic devices. In this review, we first briefly overview valleytronics and its related properties, the ways to realize valley polarization in nonmagnetic valleytronic materials. Then we focus on the recent developments in two-dimensional ferrovalley materials, which can be classified according to their molecular formula and crystal structure: MX2; M(XY)2, M(XY2) and M(XYZ)2; M2X3, M3X8 and MNX6; MNX2Y2, M2X2Y6 and MNX2Y6; and the Janus structure ferrovalley materials. In the inequivalent valleys, the Berry curvatures have opposite signs with unequal absolute values, leading to anomalous valley Hall effect. When the valley polarization is large, the ferrovalleys can be selectively excited even with unpolarized light. Intrinsic valley polarization in two-dimensional ferrovalley materials is of great importance. It opens a new avenue for information-related applications and hence is under rapid development.

Funder

National Natural Science Foundation of China

Scientific Research Foundation of Hunan Provincial Education Department

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3