Selective amorphization of SiGe in Si/SiGe nanostructures via high energy Si+ implant

Author:

Turner Emily M.1ORCID,Campbell Quinn2ORCID,Avci Ibrahim3,Weber William J.4ORCID,Lu Ping5,Wang George T.6ORCID,Jones Kevin S.1

Affiliation:

1. Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, USA

2. Quantum Computer Science Department, Sandia National Laboratories, Albuquerque, New Mexico 87158, USA

3. Synopsys, Inc., Mountain View, California 94043, USA

4. Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA

5. Department of Materials Characterization and Performance, Sandia National Laboratories, Albuquerque, New Mexico 87158, USA

6. Advanced Materials Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87158, USA

Abstract

The selective amorphization of SiGe in Si/SiGe nanostructures via a 1 MeV Si+ implant was investigated, resulting in single-crystal Si nanowires (NWs) and quantum dots (QDs) encapsulated in amorphous SiGe fins and pillars, respectively. The Si NWs and QDs are formed during high-temperature dry oxidation of single-crystal Si/SiGe heterostructure fins and pillars, during which Ge diffuses along the nanostructure sidewalls and encapsulates the Si layers. The fins and pillars were then subjected to a 3 × 1015 ions/cm2 1 MeV Si+ implant, resulting in the amorphization of SiGe, while leaving the encapsulated Si crystalline for larger, 65-nm wide NWs and QDs. Interestingly, the 26-nm diameter Si QDs amorphize, while the 28-nm wide NWs remain crystalline during the same high energy ion implant. This result suggests that the Si/SiGe pillars have a lower threshold for Si-induced amorphization compared to their Si/SiGe fin counterparts. However, Monte Carlo simulations of ion implantation into the Si/SiGe nanostructures reveal similar predicted levels of displacements per cm3. Molecular dynamics simulations suggest that the total stress magnitude in Si QDs encapsulated in crystalline SiGe is higher than the total stress magnitude in Si NWs, which may lead to greater crystalline instability in the QDs during ion implant. The potential lower amorphization threshold of QDs compared to NWs is of special importance to applications that require robust QD devices in a variety of radiation environments.

Funder

Sandia National Laboratories

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3