Loss effects on quantum surface plasmon polaritons excited by a traveling electron beam

Author:

Mahmoud Mohamed1ORCID,Turky Abdelhalim A.1,Ahmed Moustafa23ORCID,Fares Hesham14ORCID

Affiliation:

1. Department of Physics, Faculty of Science, Assiut University 1 , Assiut 71516, Egypt

2. Department of Physics, Faculty of Science, King Abdulaziz University 2 , Jeddah 22233, Saudi Arabia

3. Department of Physics, Faculty of Science, Minia University 3 , Minia 61519, Egypt

4. Department of Physics, Faculty of Science, Taibah University 4 , P. O. Box 30002, Medina, Saudi Arabia

Abstract

We present the modeling of a quantum regime for surface plasmon polaritons (SPPs) excited by an electron beam skimming parallel to the surface of a metallic structure. The theoretical approach resembles that used to describe the quantum Cherenkov radiation in which the quantized free electrons interact with a classical radiation field. In this paper, we rephrase the model in a more rigorous way, considering the detrimental effects of losses on coherent light. In the quantum regime of SPPs, each electron emits a single photon due to the transition between two successive momentum states. It is shown that the quantum nature of SPPs is realized in the low beam current limit where the radiation (gain in the field strength) operates in discrete frequency bands with a remarkably narrow linewidth. When losses are negligible, the photon emission occurs in periodic bursts along the interaction length. We show also that the Ohmic loss effects in the SPP process set an intrinsic limit on the coherent production of photons and also have severe detrimental effects on the radiation intensity. The findings of this study can describe recent experimental observations of the surface plasmonic near-field based on the photon-induced near-field electron microscopy.

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3