Trade-off between reconstruction accuracy and physical validity in modeling turbomachinery particle image velocimetry data by physics-informed convolutional neural networks

Author:

Soltani MaryamORCID,Akbari GhasemORCID,Montazerin NaderORCID

Abstract

Particle image velocimetry (PIV) data are a valuable asset in fluid mechanics. It is capable of visualizing flow structures even in complex physics scenarios, such as the flow at the exit of the rotor of a centrifugal fan. Machine learning is also a successful companion to PIV in order to increase data resolution or impute experimental gaps. While classical algorithms focus solely on replicating data using statistical metrics, the application of physics-informed neural networks (PINN) contributes to both data reconstruction and adherence to governing equations. The present study utilizes a convolutional physics-informed auto-encoder to reproduce planar PIV fields in the gappy regions while also satisfying the mass conservation equation. It proposes a novel approach that compromises experimental data reconstruction for compliance with physical restrictions. Simultaneously, it is aimed to ensure that the reconstruction error does not considerably deviate from the uncertainty band of the test data. A turbulence scale approximation is employed to set the relative weighting of the physical and data-driven terms in the loss function to ensure that both objectives are achieved. All steps are initially evaluated on a set of direct numerical simulation data to demonstrate the general capability of the network. Finally, examination of the PIV data indicates that the proposed PINN auto-encoder can enhance reconstruction accuracy by about 28% and 29% in terms of mass conservation residual and velocity statistics, respectively, at the expense of up to a 5% increase in the number of vectors with reconstruction error higher than the uncertainty band of the PIV test data.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3