A Review of Physics-Informed Machine Learning in Fluid Mechanics

Author:

Sharma Pushan1ORCID,Chung Wai Tong1ORCID,Akoush Bassem1ORCID,Ihme Matthias12ORCID

Affiliation:

1. Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA

2. Department of Photon Science, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA

Abstract

Physics-informed machine-learning (PIML) enables the integration of domain knowledge with machine learning (ML) algorithms, which results in higher data efficiency and more stable predictions. This provides opportunities for augmenting—and even replacing—high-fidelity numerical simulations of complex turbulent flows, which are often expensive due to the requirement of high temporal and spatial resolution. In this review, we (i) provide an introduction and historical perspective of ML methods, in particular neural networks (NN), (ii) examine existing PIML applications to fluid mechanics problems, especially in complex high Reynolds number flows, (iii) demonstrate the utility of PIML techniques through a case study, and (iv) discuss the challenges and opportunities of developing PIML for fluid mechanics.

Funder

United States Department of Energy

National Aeronautics and Space Administration

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference129 articles.

1. Physics-informed machine learning;Karniadakis;Nat. Rev. Phys.,2021

2. Bishop, C.M. (2006). Pattern Recognition and Machine Learning, Springer.

3. Rectified linear units improve restricted Boltzmann machines;Nair;Proc. Int. Conf. Mach. Learn.,2010

4. Backpropagation and stochastic gradient descent method;Amari;Neurocomputing,1993

5. Learning representations by back-propagating errors;Rumelhart;Nature,1986

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3