Machine learning-based optimization of a pitching airfoil performance in dynamic stall conditions using a suction controller

Author:

Kasmaiee Sa.1ORCID,Tadjfar M.1,Kasmaiee Si.1ORCID

Affiliation:

1. Turbulence and Multiphase Flow Laboratory, Department of Aerospace Engineering, Amirkabir University of Technology , Tehran, Iran

Abstract

Flow separation control on oscillating airfoils is crucial for enhancing the efficiency of turbine blades. In this study, a genetic algorithm was employed to optimize the configuration of a pure suction jet actuator on an oscillating airfoil at a Reynolds number of 1.35×105. Neural networks based on multilayer perceptrons were used to train the aerodynamic coefficients as functions of the control parameters and reduce the number of simulations. The objective function was the mean performance coefficient, defined as the ratio of the average lift to the average drag during an oscillation period. The control parameters were location, velocity, opening length, and suction jet angle relative to the airfoil surface. The optimal jet had the maximum velocity and opening length and was normal to the airfoil surface. The optimal jet location was near the leading edge vortex (LEV) (between 3% and 6% of the chord). The optimum jet can increase the average performance coefficient (average ratio of lift to drag during a period) by about 24 times. The major part of this improvement is related to reducing drag force. The average lift coefficient increases from about 0.58 to about 0.92 using this jet, while the average drag coefficient decreases from about 0.23 to about 0.02. The optimal jet suppressed the dynamic stall vortex, which resulted from the combination of two clockwise vortices: LEV and turbulent separation vortex. Suppressing this vortex prevented the counterclockwise trailing edge vortex from growing at the end of the airfoil.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3