Numerical virtual flight investigation for longitudinal maneuver of a generic fighter based on machine learning

Author:

Yan LangORCID,Chang XinghuaORCID,Wang Nianhua,Zhang LaipingORCID,Liu Wei,Deng Xiaogang

Abstract

Coupled with computational fluid dynamics (CFD), rigid body dynamics (RBD), and flight control system, the numerical virtual flight (NVF) technology can simulate the maneuvering flight process of an air vehicle under control. In this paper, the NVF investigation of longitudinal maneuvers with elevator and thrust vector control is performed for a generic fighter configuration. The rigid dynamic hybrid grid method is taken to realize the motion of the fighter, and the overlapping moving grid technology meets the deflection of the elevator. The Reynolds-averaged Navier–Stokes equations in arbitrary Lagrangian–Eulerian form are coupled with the RBD equations to solve aerodynamics and kinematics problems, while flight control is achieved through an advanced machine learning method. First, the fighter is forced to pitch with the periodic deflection of the elevator, and the unsteady computation is carried out to obtain aerodynamic data. Then, an artificial neural network (ANN) is adopted for aerodynamic identification and modeling, which involves establishing a model between the aerodynamic coefficient and pitching motion parameters. Afterward, the ANN-based NVF is implemented on the basis of the established model and deep reinforcement learning (DRL) is used to design the pitching control law of the fighter. The NVF results based on ANN show that the fighter has a good control effect under the action of the elevator, elevator with open-loop thrust vector, and elevator with closed-loop thrust vector, respectively, as well as the results from the CFD-based NVF system. Finally, the three-degree-of-freedom NVF based on CFD also indicates that the control law designed through DRL has good generalization characteristics. This study demonstrates the potential prospects of machine learning methods in the design and research for a novel generation of air vehicles.

Funder

National Key Project

Publisher

AIP Publishing

Reference36 articles.

1. Challenges in high-alpha vehicle dynamics;Prog. Aerosp. Sci.,1995

2. Status update of the AEDC wind tunnel virtual flight testing development program,2002

3. An integrated computational/experimental approach to UCAV stability and control estimation: Overview of NATO RTO AVT-161,2010

4. Simulation method for wind tunnel based virtual flight testing;Int. J. Mod. Phys.,2012

5. The suppression of flying-wing roll oscillations with open and closed-loop spanwise blowing;Aerosp. Sci. Technol.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3