High-performance p-channel CuIBr thin-film transistor synthesized from solution in the atmosphere

Author:

Wei Wei1ORCID,Gao Ming1ORCID,Wang Zhiyong1ORCID,Zhang Yong-Wei2ORCID,Yu Zhi Gen2ORCID,Chim Wai Kin1ORCID,Zhu Chunxiang1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, National University of Singapore 1 , 4 Engineering Drive 3, Singapore 117583, Singapore

2. Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR) 2 , 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore

Abstract

The p-type transparent semiconductor CuI has a high potential to be used in thin film transistors (TFTs) due to high hole mobility and solution processability. However, the lower copper vacancy formation energy and the subsequent high hole concentration in CuI lead to a low on/off current ratio (ION/IOFF) for CuI TFT devices. The density functional theory results suggest that the copper vacancy formation energy increases with the CuBr content in the Br-doped CuI film, resulting in lower hole concentration. Alloying CuI with CuBr is proposed to reduce the hole concentration in the CuIBr alloy. The CuIBr TFTs with Br content ranging from 0% to 10% were fabricated using the solution method. It is found that the hole mobility decreases from 8 to 1 cm2 V−1 s−1, while the ION/IOFF ratio increases from 102 to 104 with the increasing Br content. The CuIBr TFT with 7.5% Br content exhibits a high hole mobility larger than 5 cm2 V−1 s−1 and high ION/IOFF ratio of 104, which paves the way for inorganic-based CMOS circuits on flexible and transparent substrates.

Funder

Ministry of Education - Singapore

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3