Transport properties for neutral C, H, N, O, and Si-containing species and mixtures from the Gordon and McBride thermodynamic database

Author:

Bellas Chatzigeorgis Georgios1ORCID,Haskins Justin B.2ORCID,Scoggins James B.3ORCID

Affiliation:

1. AMA, Inc., Thermal Protection Materials Branch, NASA Ames Research Center, Moffett Field, California 94035, USA

2. Thermal Protection Materials Branch, NASA Ames Research Center, Moffett Field, California 94035, USA

3. Aerothermodynamics Branch, NASA Langley Research Center, Hampton, Virginia 23681, USA

Abstract

Accurate transport properties of non-ionized gas mixtures of C, H, O, N, and Si-containing species at temperatures up to 4000 K are essential in many scientific fields. Mixture transport properties are computed through the solution of linear transport systems, requiring collision integrals as functions of temperature for each binary collision pair in the mixture. Due to the dimensionality of the problem, no such database exists for all the 180 hydrocarbons and silicon species detailed in the nine-coefficient polynomial thermodynamic database of Gordon and McBride, widely used in many applications. This constraint was overcome by using a phenomenological inter-molecular potential energy surface suitable for transport properties, which describes the pair interaction approximated with two fundamental species physical properties, namely the dipole electric polarizability and the number of effective electrons participating in the interaction. These two parameters were calculated with ab initio quantum chemistry calculations, since they were not always available in literature. The studied methodology was verified and validated against other approaches at a species and collision integral level. Transport properties for a variety of equilibrium mixtures, including planetary atmospheres and chemical compositions of thermal protection materials relevant to aerospace applications, were calculated, assessing the predictive capabilities of this new database.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3