Intermolecular interactions and the weakly bound precursor states of elementary physicochemical processes

Author:

Pirani Fernando,Falcinelli StefanoORCID,Vecchiocattivi Franco,Aquilanti Vincenzo,Laricchiuta Annarita,Colonna Gianpiero,Capitelli Mario

Abstract

AbstractThis study concerns the importance of the precursor (or pre-reactive) state of elementary physicochemical processes whose basic features, as structure, stability, and trapping effect of reagents, are controlled by the balance of intermolecular forces that arise at long range and operate at intermediate and short separation distances. The detailed formulation of such forces, determining formation probability and dynamical evolution of the precursor state, is of relevance in molecular science and difficult to be treated by quantum chemistry. Such a problem has been tackled by us exploiting the phenomenological approach, which employs semi-empirical and empirical formulas to represent strength, range and angular dependence of the leading interaction components involved. In addition to the study of transport phenomena, part of the attention is addressed to chemi-ionization (or Penning ionization) reactions for which neutral reagents lead to atomic and/or molecular ions plus electrons as products. Chemi-ionizations are bimolecular processes occurring in several environments of interest, where a reagent is a species, formed in excited-metastable electronic states by collisions with energetic electrons or cosmic rays. For such reactions all crucial electronic rearrangements, affecting stability and evolution of the weakly bound precursor state, here coincident with the reaction transition state, are characterized with a high detail. The results of the present study are of interest for many other processes, whose precursor states and their relevant features are difficult to characterize, often masked by several other effects. Graphical abstract

Funder

Università degli Studi di Perugia

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Agricultural and Biological Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3