Adiabatic extraction of nonlinear optical properties from real-time time-dependent electronic-structure theory

Author:

Ofstad Benedicte Sverdrup1ORCID,Kristiansen Håkon Emil1ORCID,Aurbakken Einar1ORCID,Schøyen Øyvind Sigmundson2ORCID,Kvaal Simen1ORCID,Pedersen Thomas Bondo1ORCID

Affiliation:

1. Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo 1 , Oslo, Norway

2. Department of Physics, University of Oslo 2 , Oslo, Norway

Abstract

Real-time simulations of laser-driven electron dynamics contain information about molecular optical properties through all orders in response theory. These properties can be extracted by assuming convergence of the power series expansion of induced electric and magnetic multipole moments. However, the accuracy relative to analytical results from response theory quickly deteriorates for higher-order responses due to the presence of high-frequency oscillations in the induced multipole moment in the time domain. This problem has been ascribed to missing higher-order corrections. We here demonstrate that the deviations are caused by nonadiabatic effects arising from the finite-time ramping from zero to full strength of the external laser field. Three different approaches, two using a ramped wave and one using a pulsed wave, for extracting electrical properties from real-time time-dependent electronic-structure simulations are investigated. The standard linear ramp is compared to a quadratic ramp, which is found to yield highly accurate results for polarizabilities, and first and second hyperpolarizabilities, at roughly half the computational cost. Results for the third hyperpolarizability are presented along with a simple, computable measure of reliability.

Funder

Research Council of Norway

Sigma2-the National Infrastructure of High Performance Computing and Data Storage in Norway

Center of Advanced Study in Oslo, Norway

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Relativistic Real-Time Methods;Comprehensive Computational Chemistry;2024

2. Magnetic optical rotation from real-time simulations in finite magnetic fields;The Journal of Chemical Physics;2023-11-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3