Magnetic optical rotation from real-time simulations in finite magnetic fields

Author:

Ofstad Benedicte Sverdrup1ORCID,Wibowo-Teale Meilani2ORCID,Kristiansen Håkon Emil1ORCID,Aurbakken Einar1,Kitsaras Marios Petros3ORCID,Schøyen Øyvind Sigmundson4ORCID,Hauge Eirill15ORCID,Irons Tom J. P.2ORCID,Kvaal Simen1ORCID,Stopkowicz Stella13ORCID,Wibowo-Teale Andrew M.12ORCID,Pedersen Thomas Bondo1ORCID

Affiliation:

1. Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo 1 , Oslo, Norway

2. School of Chemistry, University of Nottingham, University Park 2 , Nottingham NG7 2RD, United Kingdom

3. Physical and Theoretical Chemistry, Saarland University 3 , Campus B2.2, 66123 Saarbruecken, Germany

4. Department of Physics, University of Oslo 4 , Oslo, Norway

5. Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory 5 , 0164 Oslo, Norway

Abstract

We present a numerical approach to magnetic optical rotation based on real-time time-dependent electronic-structure theory. Not relying on perturbation expansions in the magnetic field strength, the formulation allows us to test the range of validity of the linear relation between the rotation angle per unit path length and the magnetic field strength that was established empirically by Verdet 160 years ago. Results obtained from time-dependent coupled-cluster and time-dependent current density-functional theory are presented for the closed-shell molecules H2, HF, and CO in magnetic fields up to 55 kT at standard temperature and pressure conditions. We find that Verdet’s linearity remains valid up to roughly 10–20 kT, above which significant deviations from linearity are observed. Among the three current density-functional approximations tested in this work, the current-dependent Tao–Perdew–Staroverov–Scuseria hybrid functional performs the best in comparison with time-dependent coupled-cluster singles and doubles results for the magnetic optical rotation.

Funder

Research Council of Norway

High Performance Computing and Data Storage in Norway

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3