GeS conducting-bridge resistive memory device with IGZO buffer layer for highly uniform and repeatable switching

Author:

Ali Asif1ORCID,Abbas Haider1ORCID,Li Jiayi1ORCID,Ang Diing Shenp1ORCID

Affiliation:

1. School of Electrical and Electronic Engineering, Nanyang Technological University , Singapore 639798, Singapore

Abstract

A double stacked monochalcogenide GeS-based conducting-bridge random access memory (CBRAM) device with a IGZO buffer layer is investigated for highly improved resistive memory characteristics. The IGZO/GeS double layer is found to provide the CBRAM with a markedly improved sub-1V DC set/reset-voltage distributions (<±0.1 V variation). High endurance (>107 cycles) and retention (>105 s at 85 °C) performance are also achieved. The metal ion diffusion and migration rates in the solid electrolytes along with the redox reaction rates at the electrodes determine the respective resistive switching (RS) mechanism in the CBRAM device. Considering this fact, it is proposed that Ag diffusion into IGZO creates a virtual electrode, when coupled with strong ionic transport in GeS, consistently mediate the formation/dissolution of Ag filament there, thus reducing switching variation. Understanding the RS mechanism based on the materials' physical and chemical properties and tailoring the device structure allow an optimal control over cycle to cycle and device to device variability. The findings show that this material combination or similar oxide/chalcogenide stacks may offer a facile means for mitigating CBRAM variability.

Funder

Ministry of Education - Singapore

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3