Strength of 2D glasses explored by machine-learning force fields

Author:

Shi Pengjie1,Xu Zhiping1ORCID

Affiliation:

1. Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University , Beijing 100084, China

Abstract

The strengths of glasses are intricately linked to their atomic-level heterogeneity. Atomistic simulations are frequently used to investigate the statistical physics of this relationship, compensating for the limited spatiotemporal resolution in experimental studies. However, theoretical insights are limited by the complexity of glass structures and the accuracy of the interatomic potentials used in simulations. Here, we investigate the strengths and fracture mechanisms of 2D silica, with all structural units accessible to direct experimental observation. We develop a neural network force field for fracture based on the deep potential-smooth edition framework. Representative atomic structures across crystals, nanocrystalline, paracrystalline, and continuous random network glasses are studied. We find that the virials or bond lengths control the initialization of bond-breaking events, creating nanoscale voids in the vitreous network. However, the voids do not necessarily lead to crack propagation due to a disorder-trapping effect, which is stronger than the lattice-trapping effect in a crystalline lattice, and occurs over larger length and time scales. Fracture initiation proceeds with void growth and coalescence and advances through a bridging mechanism. The fracture patterns are shaped by subsequent trapping and cleavage steps, often guided by voids forming ahead of the crack tip. These heterogeneous processes result in atomically smooth facets in crystalline regions and rough, amorphous edges in the glassy phase. These insights into 2D crystals and glasses, both sharing SiO2 chemistry, highlight the pivotal role of atomic-level structures in determining fracture kinetics and crack path selection in materials.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3