Predicting dynamic stability from static features in power grid models using machine learning

Author:

Titz Maurizio123ORCID,Kaiser Franz23ORCID,Kruse Johannes123ORCID,Witthaut Dirk123ORCID

Affiliation:

1. Forschungszentrum Jülich, Institute for Energy and Climate Research—Energy Systems Engineering (IEK-10) 1 , 52428 Jülich, Germany

2. Forschungszentrum Jülich, Institute for Energy and Climate Research—Systems Analysis and Technology Evaluation (IEK-STE) 2 , 52428 Jülich, Germany

3. Institute for Theoretical Physics, University of Cologne 3 , 50937 Köln, Germany

Abstract

A reliable supply with electric power is vital for our society. Transmission line failures are among the biggest threats for power grid stability as they may lead to a splitting of the grid into mutual asynchronous fragments. New conceptual methods are needed to assess system stability that complement existing simulation models. In this article, we propose a combination of network science metrics and machine learning models to predict the risk of desynchronization events. Network science provides metrics for essential properties of transmission lines such as their redundancy or centrality. Machine learning models perform inherent feature selection and, thus, reveal key factors that determine network robustness and vulnerability. As a case study, we train and test such models on simulated data from several synthetic test grids. We find that the integrated models are capable of predicting desynchronization events after line failures with an average precision greater than 0.996 when averaging over all datasets. Learning transfer between different datasets is generally possible, at a slight loss of prediction performance. Our results suggest that power grid desynchronization is essentially governed by only a few network metrics that quantify the networks’ ability to reroute the flow without creating exceedingly high static line loadings.

Funder

Bundesministerium für Bildung und Forschung

Helmholtz Association

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3