Plasma-enhanced atomic layer deposition as a technique for controlling the composition and properties of indium-based transparent conductive oxides

Author:

Zered Matanel1ORCID,Korchnoy Valentina2ORCID,Frey Gitti L.1ORCID,Eizenberg Moshe1ORCID

Affiliation:

1. Department of Materials Science and Engineering, Technion–Israel Institute of Technology 1 , Haifa 32000, Israel

2. Micro-Nano Fabrication Unit (MNFU), Microelectronics Center, Technion–Israel Institute of Technology 2 , Haifa 32000, Israel

Abstract

Indium oxide and doped indium oxide films were successfully grown utilizing a plasma-enhanced atomic layer deposition supercycling process, which was found to be an effective means of controlling films’ composition and, hence, their properties. Using trimethylindium and oxygen plasma as an indium precursor and a co-reactant, respectively, a growth rate of approximately 1.26 Å per cycle was obtained based on thickness measurements by spectroscopic ellipsometry. Three distinct dopants, Sn, Ti, and Mo, have been incorporated into indium oxide. The effects of dopant type, cycle ratio of dopant to indium oxide, and thermal annealing on the structural, electrical, and optical properties were studied. The deposited films consisted of polycrystalline columnar grains perpendicular to the substrate with a cubic bixbyite structure and [111] as the favored growth direction. Thermal annealing had a significant effect on the film characteristics, resulting in an order of magnitude reduction in resistivity, as well as changes in transmittance in the near-infrared (NIR) and ultraviolet (UV) regions. The lowest resistivities achieved for Sn-doped, Ti-doped, and Mo-doped were 2.8 × 10−4, 4.2 × 10−4, and 6.1 × 10−4 Ω cm, respectively. The changes are attributed to dopant activation, as the UV shift between the differently doped samples may be linked to the Moss–Burstein effect and the NIR behavior can be explained by an increase in charge carrier density, as predicted by the Drude model. The three dopants primarily provide a trade-off between electrical resistance and NIR transparency. Mo-doped films exhibited the highest near-infrared transparency, while Sn-doped films offered the lowest sheet resistance.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3