Latent-to-sensible heat conversion kinetics during nanoparticle coalescence

Author:

Ojha Abhilash1ORCID,Tamadate Tomoya2ORCID,Hogan, Christopher J.1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Minnesota 1 , Minneapolis, Minnesota 55455, USA

2. Department of Frontier Engineering, Kanazawa University 2 , Kanazawa, Japan

Abstract

Coagulational growth in an aerosol is a multistep process; first particles collide, and then they coalesce with one another. Coalescence kinetics have been investigated in numerous prior studies, largely through atomistic simulations of nanoclusters (102–104 atoms). However, with a few exceptions, they have either assumed the process is completely isothermal or is a constant energy process. During coalescence, there is the formation of new bonds, decreasing potential energy, and correspondingly increasing internal kinetic (thermal) energy. Internal kinetic energy evolution is dependent not only on coalescence kinetics but also on heat transfer to the surrounding gas. Here, we develop and test a model of internal kinetic energy evolution in collisionally formed nanoclusters in the presence of a background gas. We find that internal kinetic energy dynamics hinge upon a power law relationship describing latent-to-sensible heat release as well as a modified thermal accommodation coefficient. The model is tested against atomistic models of 1.5–3.0 nm embedded-atom gold nanocluster sintering in argon and helium environments. The model results are in excellent agreement with the simulation results for all tested conditions. Results show that nanocluster effective temperatures can increase by hundreds of Kelvin due to coalescence, but that the rise and re-equilibration of the internal kinetic energy is strongly dependent on the background gas environment. Interestingly, internal kinetic energy change kinetics are also found to be distinct from surface area change kinetics, suggesting that modeling coalescence heat release solely due to surface area change is inaccurate.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3