A neural network parametrized coagulation rate model for <3 nm titanium dioxide nanoclusters

Author:

Tamadate Tomoya1ORCID,Yang Suo1ORCID,Hogan Christopher J.1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Minnesota , Minneapolis, Minnesota 55455, USA

Abstract

Coagulation is a key factor governing the size distribution of nanoclusters during the high temperature synthesis of metal oxide nanomaterials. Population balance models are strongly influenced by the coagulation rate coefficient utilized. Although simplified coagulation models are often invoked, the coagulation process, particularly for nanoscale particles, is complex, affected by the coagulating nanocluster sizes, the surrounding temperature, and potential interactions. Toward developing improved models of nanocluster and nanoparticle growth, we have developed a neural network (NN) model to describe titanium dioxide (TiO2) nanocluster coagulation rate coefficients, trained with molecular dynamics (MD) trajectory calculations. Specifically, we first calculated TiO2 nanocluster coagulation probabilities via MD trajectory calculations varying the nanocluster diameters from 0.6 to 3.0 nm, initial relative velocity from 20 to 700 m s−1, and impact parameter from 0.0 to 8.0 nm. Calculations consider dipole–dipole interactions, dispersion interactions, and short-range repulsive interactions. We trained a NN model to predict whether a given set of nanocluster diameters, impact parameter, and initial velocity would lead to the outcome of coagulation. The accuracy between the predicted outcomes from the NN model and the MD trajectory calculation results is >95%. We subsequently utilized both the NN model and MD trajectory calculations to examine coagulation rate coefficients at 300 and 1000 K. The NN model predictions are largely within the range 0.65–1.54 of MD predictions, and importantly NN predictions capture the local minimum coagulation rate coefficients observed in MD trajectory calculations. The NN model can be directly implemented in population balances of TiO2 formation.

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3