High-resolution reconstruction algorithm for the three-dimensional velocity field produced by atomization of two impinging jets based on deep learning

Author:

Abstract

The velocity fields measured by experiments or determined through simulations are essential in advancing our understanding of the complex atomization process of impinging jets. However, existing methods are expensive and time-consuming. In this study, we apply deep learning to the estimation of the three-dimensional velocity fields produced by the atomization of two impinging jets. Two deep learning models are developed, namely, a liquid volume fraction (LVF) estimation model based on the Swin Transformer architecture and a three-dimensional velocity field estimation model based on four-dimensional convolution (4D-Conv). The dataset for training the models is generated by direct numerical simulations (DNS). To train the LVF model, we utilize two gray images generated by a pinhole camera model, mimicking the acquisition of experimental images. We then introduce a mask generated by binocular vision techniques into the LVF model. The LVF fields estimated with the mask are in better agreement with the reference DNS data. We further utilize the estimated LVF fields to train the 4D-Conv-based model. The mean absolute percentage error compared with the results of a full-flow test is found to be less than 5%. The results indicate that the proposed approach has the potential to accurately reconstruct volume velocity data from two-dimensional images.

Funder

National Natural Science Foundation of China

Ministry of Industry and Information Technology of the People's Republic of China

Beijing Institute of Technology Research Fund Program for Young Scholars

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3