Ultrafast vibrational excitation transfer on resonant antenna lattices revealed by two-dimensional infrared spectroscopy

Author:

Cohn Bar12,Sufrin Shmuel23,Chuntonov Lev12ORCID

Affiliation:

1. Schulich Faculty of Chemistry, Technion – Israel Institute of Technology, Haifa 3200003, Israel

2. Solid State Institute, Technion – Israel Institute of Technology, Haifa 3200003, Israel

3. Faculty of Mechanical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel

Abstract

High-quality lattice resonances in arrays of infrared antennas operating in an open-cavity regime form polariton states by means of strong coupling to molecular vibrations. We studied polaritons formed by carbonyl stretching modes of (poly)methyl methacrylate on resonant antenna arrays using femtosecond 2DIR spectroscopy. At a normal incidence of excitation light, doubly degenerate antenna-lattice resonances (ALRs) form two polariton states: a lower polariton and an upper polariton. At an off-normal incidence geometry of 2DIR experiments, the ALR degeneracy is lifted and, consequently, the polariton energies are split. We spectrally resolved and tracked the time-dependent evolution of a cross-peak signal associated with the excitation of reservoir states and the unidirectional transfer of the excess energy to lower polaritons. Bi-exponential decay of the cross-peak suggests that a reversible energy exchange between the bright and dark lower polaritons occurs with a characteristic transfer time of ∼200 fs. The cross-peak signal further decays within ∼800 fs, which is consistent with the relaxation time of the carbonyl stretching vibration and with the dephasing time of the ALR. An increase in the excitation pulse intensity leads to saturation of the cross-peak amplitude and a modification of the relaxation dynamics. Using quantum-mechanical modeling, we found that the kinetic scheme that captures all the experimental observations implies that only the bright lower polariton accepts the energy from the reservoir, suggesting that transfer occurs via a mechanism involving dipole–dipole interaction. An efficient reservoir-to-polariton transfer can play an important role in developing novel room-temperature quantum optical devices in the mid-infrared wavelength region.

Funder

Israel Science Foundation

United States-Israel Binational Science Foundation

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3