Spontaneous Raman scattering from vibrational polaritons is obscured by reservoir states

Author:

Cohn Bar12,Filippov Tikhon1ORCID,Ber Emanuel3ORCID,Chuntonov Lev12ORCID

Affiliation:

1. Schulich Faculty of Chemistry, Technion–Israel Institute of Technology 1 , Haifa 3200003, Israel

2. Solid State Institute, Technion–Israel Institute of Technology 2 , Haifa 3200003, Israel

3. Viterbi Faculty of Electrical and Computer Engineering, and The Helen Diller Quantum Center, Technion–Israel Institute of Technology 3 , Haifa 3200003, Israel

Abstract

Vibrational strong coupling results from the interaction between optically allowed molecular vibrational excitations and the resonant mode of an infrared cavity. Strong coupling leads to the formation of hybrid states, known as vibrational polaritons, which are readily observed in transmission measurements and a manifold of the reservoir states. In contrast, Raman spectroscopy of vibrational polaritons is elusive and has recently been the focus of both theoretical and experimental investigations. Because Raman measurements are frequently performed with high-numerical aperture excitation/collection optics, the angular dispersion of the strongly coupled system must be carefully considered. Herein, we experimentally investigated vibrational polaritons involving dispersive collective lattice resonances of infrared antenna arrays. Despite clear indications of the strong coupling to vibrational excitations in the transmission spectrum; we found that Raman spectra do not bear signatures of the polaritonic transitions. Detailed measurements indicate that the disappearance of the Raman signal is not due to the polariton dispersion in our samples. On the other hand, the Tavis–Cummings–Holstein model that we employed to interpret our results suggests that the ratio of the Raman transition strengths between the reservoir and the polariton states scales according to the number of strongly coupled molecules. Because the vibrational transitions are relatively weak, the number of molecules required to achieve strong coupling conditions is about 109 per unit cell of the array of infrared antennas. Therefore, the scaling predicted by the Tavis–Cummings–Holstein model can explain the absence of the polariton signatures in spontaneous Raman scattering experiments.

Funder

Israel Science Foundation

United States-Israel Binational Science Foundation

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3