“Non-equilibrium” grain boundaries in additively manufactured CoCrFeMnNi high-entropy alloy: Enhanced diffusion and strong segregation

Author:

Choi Nuri1ORCID,Taheriniya Shabnam1ORCID,Yang Sangsun2ORCID,Esin Vladimir A.3ORCID,Yu Ji Hun2ORCID,Lee Jai-Sung4ORCID,Wilde Gerhard1ORCID,Divinski Sergiy V.1ORCID

Affiliation:

1. Institute of Materials Physics, University of Münster, 48149 Münster, Germany

2. Powder Materials Division, Korea Institute of Materials Science, 51508 Changwon, South Korea

3. Mines Paris, PSL University, Centre des Matériaux (CNRS UMR 7633), 91003 Évry, France

4. Department of Materials Science and Chemical Engineering, Hanyang University, 15588 Ansan, South Korea

Abstract

Grain boundary diffusion in an additively manufactured equiatomic CoCrFeMnNi high-entropy alloy is systematically investigated at 500 K under the so-called C-type kinetic conditions when bulk diffusion is completely frozen. In the as-manufactured state, general (random) grain boundaries are found to be characterized by orders-of-magnitude enhanced diffusivities and a non-equilibrium segregation of (dominantly) Mn atoms. These features are explained in terms of a non-equilibrium state of grain boundaries after rapid solidification. The grain boundary diffusion rates are found to be almost independent on the scanning/building strategy used for the specimen’s manufacturing, despite pronounced microstructure differences. Grain boundary migration during diffusion annealing turned out to preserve the non-equilibrium state of the interfaces due to continuous consumption of the processing-induced defects by moving boundaries. Whereas the kinetic “non-equilibrium” state of the interfaces relaxes after annealing at 773 K, the non-equilibrium segregation is retained, being further accompanied by a nano-scale phase decomposition at the grain boundaries. The generality of the findings for additively manufactured materials is discussed.

Funder

Deutsche Forschungsgemeinschaft

Deutscher Akademischer Austauschdienst

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3