Laser-driven, ion-scale magnetospheres in laboratory plasmas. I. Experimental platform and first results

Author:

Schaeffer D. B.1ORCID,Cruz F. D.2ORCID,Dorst R. S.3,Cruz F.2ORCID,Heuer P. V.3ORCID,Constantin C. G.3,Pribyl P.3,Niemann C.3ORCID,Silva L. O.2ORCID,Bhattacharjee A.14ORCID

Affiliation:

1. Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08540, USA

2. GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal

3. Department of Physics and Astronomy, University of California—Los Angeles, Los Angeles, California 90095, USA

4. Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA

Abstract

Magnetospheres are a ubiquitous feature of magnetized bodies embedded in a plasma flow. While large planetary magnetospheres have been studied for decades by spacecraft, ion-scale “mini” magnetospheres can provide a unique environment to study kinetic-scale, collisionless plasma physics in the laboratory to help validate models of larger systems. In this work, we present preliminary experiments of ion-scale magnetospheres performed on a unique high-repetition-rate platform developed for the Large Plasma Device at the University of California, Los Angeles. The experiments utilize a high-repetition-rate laser to drive a fast plasma flow into a pulsed dipole magnetic field embedded in a uniform magnetized background plasma. 2D maps of the magnetic field with high spatial and temporal resolution are measured with magnetic flux probes to examine the evolution of magnetosphere and current density structures for a range of dipole and upstream parameters. The results are further compared to 2D particle-in-cell simulations to identify key observational signatures of the kinetic-scale structures and dynamics of the laser-driven plasma. We find that distinct 2D kinetic-scale magnetopause and diamagnetic current structures are formed at higher dipole moments, and their locations are consistent with predictions based on pressure balances and energy conservation.

Funder

U.S. Department of Energy

National Science Foundation

Defense Threat Reduction Agency

FP7 Ideas: European Research Council

Fundação para a Ciência e a Tecnologia

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3