Laser-driven, ion-scale magnetospheres in laboratory plasmas. II. Particle-in-cell simulations

Author:

Cruz Filipe D.1ORCID,Schaeffer Derek B.2ORCID,Cruz Fábio1ORCID,Silva Luis O.1ORCID

Affiliation:

1. GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal

2. Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08540, USA

Abstract

Ion-scale magnetospheres have been observed around comets, weakly magnetized asteroids, and localized regions on the Moon and provide a unique environment to study kinetic-scale plasma physics, in particular in the collision-less regime. In this work, we present the results of particle-in-cell simulations that replicate recent experiments on the large plasma device at the University of California, Los Angeles. Using high-repetition rate lasers, ion-scale magnetospheres were created to drive a plasma flow into a dipolar magnetic field embedded in a uniform background magnetic field. The simulations are employed to evolve idealized 2D configurations of the experiments, study highly resolved, volumetric datasets, and determine the magnetospheric structure, magnetopause location, and kinetic-scale structures of the plasma current distribution. We show the formation of a magnetic cavity and a magnetic compression in the magnetospheric region, and two main current structures in the dayside of the magnetic obstacle: the diamagnetic current, supported by the driver plasma flow, and the current associated with the magnetopause, supported by both the background and driver plasmas with some time-dependence. From multiple parameter scans, we show a reflection of the magnetic compression, bounded by the length of the driver plasma, and a higher separation of the main current structures for lower dipolar magnetic moments.

Funder

FP7 Ideas: European Research Council

Fundação para a Ciência e a Tecnologia

National Science Foundation

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3