Affiliation:
1. Science, Mathematics and Technology, Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore
Abstract
Van de Waals heterostructure (VDWH) is an emerging strategy to engineer the electronic properties of two-dimensional (2D) material systems. Motivated by the recent discovery of MoSi2N4-a synthetic septuple-layered 2D semiconductor with exceptional mechanical and electronic properties, we investigate the synergy of MoSi2N4 with wide-bandgap (WBG) 2D monolayers of GaN and ZnO using first-principle calculations. We find that MoSi2N4/GaN is a direct bandgap type-I VDWH, while MoSi2N4/ZnO is an indirect bandgap type-II VDWH. Intriguingly, by applying an electric field or mechanical strain along the out-of-plane direction, the band structures of MoSi2N4/GaN and MoSi2N4/ZnO can be substantially modified, exhibiting rich transitional behaviors, such as the type-I-to-type-II band alignment and the direct-to-indirect bandgap transitions. These findings reveal the potentials of MoSi2N4-based WBG VDWH as a tunable hybrid materials with enormous design flexibility in ultracompact optoelectronic applications.
Funder
Agency for Science, Technology and Research
Singapore University of Technology and Design
Subject
Physics and Astronomy (miscellaneous)
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献