Numerical simulations of the effects of radiofrequency cables on the single-frequency capacitively coupled plasma

Author:

Chen Zili1ORCID,Xu Jingwen2ORCID,Yu Shimin3ORCID,Wu Hao4ORCID,Huang Xiaojiang5ORCID,Wang Zhijiang3ORCID,Guo Lianbo1ORCID,Jiang Wei4ORCID,Zhang Ya6ORCID

Affiliation:

1. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China

2. Department of Mathematics, Wuhan University of Technology, Wuhan 430070, China

3. International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

4. School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China

5. College of Science, Donghua University, Shanghai 201620, China

6. Department of Physics, Wuhan University of Technology, Wuhan 430070, China

Abstract

Radiofrequency (RF) coaxial cables are one of the vital components for the power sources of capacitively coupled plasmas (CCPs), by which the RF power is transferred to excite the plasma. Usually, the cables can be treated as transmission lines (TLs). However, few studies of TLs in CCP power sources were conducted due to the nonlinear coupling between TLs and the plasma. In this work, we developed a numerical scheme of TLs based on the Lax–Wendroff method and realized the nonlinear bidirectional coupling among the lumped-element model, transmission line model, and electrostatic particle-in-cell model. Based on the combined model, three discharge patterns were found, including weak matching state, normal state, and over matching state. The great differences among the three patterns indicated that the TLs could change the impedance matching of the device and significantly affect the plasma properties.

Funder

National Magnetic Confinement Fusion Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3