Effect of Mg-doping and Fe-doping in lead zirconate titanate (PZT) thin films on electrical reliability

Author:

Koh Dongjoo1ORCID,Ko Song Won2ORCID,Yang Jung In1,Akkopru-Akgun Betul1ORCID,Trolier-McKinstry Susan1ORCID

Affiliation:

1. Department of Materials Science and Engineering and Materials Research Institute, Pennsylvania State University, State College, Pennsylvania 16802, USA

2. KOTECH LLC, State College, Pennsylvania 16801, USA

Abstract

Uniformly acceptor doped Pb(Zr0.48Ti0.52)O3 (PZT) films with 2 mol. % Mg or Fe prepared by chemical solution deposition exhibited decreased dielectric constants and remanent polarizations relative to undoped PZT. For highly accelerated lifetime testing (HALT) at 200 °C and an electric field of 300 kV/cm in the field up direction, the HALT lifetimes (t50) for undoped, Mg-doped, and Fe-doped PZT films were shortened from 2.81 ± 0.1 to 0.21 ± 0.1 and 0.54 ± 0.04 h, respectively. Through thermally stimulated depolarization current measurement, significant [Formula: see text] electromigration was found in homogeneously Mg-doped PZT thin films, a major factor in their short HALT lifetime. Because the concentration of oxygen vacancies increases with uniform acceptor doping, the lifetime decreases. In contrast, when a thin layer of Mg-doped or Fe-doped PZT was deposited on undoped PZT or Nb-doped PZT (PNZT), the HALT lifetimes were longer than those of pure PZT or PNZT films. This confirms prior work on PNZT films with a Mn-doped top layer, demonstrating that the HALT lifetime increases for composite films when a layer with multivalent acceptors is present near the negative electrode during HALT. In that case, the compensating electrons are trapped, presumably on the multivalent acceptors, thus increasing the lifetime.

Funder

Center for Dielectrics and Piezoelectrics, North Carolina State University

National Science Foundation

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3