Understanding interfacial energy structures in organic solar cells using photoelectron spectroscopy: A review

Author:

Kang Ju Hwan1ORCID,Lee Jin Hee2ORCID,Walker Bright3ORCID,Seo Jung Hwa1ORCID,Chang Gap Soo4ORCID

Affiliation:

1. Department of Physics, University of Seoul, Seoul 02504, Republic of Korea

2. Department of Chemical Engineering (BK21 FOUR), Dong-A University, Busan 49315, Republic of Korea

3. Department of Chemistry, Kyung Hee University, Seoul 02447, Republic of Korea

4. Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada

Abstract

Organic solar cells (OSCs) have received considerable attention as a promising clean energy-generating technology because of their low cost and great potential for large-scale commercial manufacturing. With significant advances in new charge-transport material design, interfacial engineering, and their operating conditions, power conversion efficiencies of OSCs have continued to increase. However, a fundamental understanding of charge carrier transport and especially how ionic moieties affect carrier transport is still lacking in OSCs. In this regard, photoelectron spectroscopy has provided valuable information about interfacial electronic structures. The interfacial electronic structure of OSC interlayers greatly impacts charge extraction and recombination, controls energy level alignment, guides active layer morphology, improves material’s compatibility, and plays a critical role in the resulting power conversion efficiency of OSCs. Interfacial engineering incorporating inorganic, organic, and hybrid materials can effectively enhance the performance of organic photovoltaic devices by reducing energy barriers for charge transport and injection while improving compatibility between metal oxides and donor–acceptor based active layers or transparent conducting electrodes. This article provides a review of recent developments in interfacial engineering underlying organic photovoltaic devices of donor–acceptor interfaces.

Funder

National Research Foundation of Korea

Natural Sciences and Engineering Research Council of Canada

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3