Universal model for electron thermal-field emission from two-dimensional semimetals

Author:

Ang L. K.1ORCID,Ang Yee Sin1ORCID,Lee Ching Hua2ORCID

Affiliation:

1. Science, Mathematics and Technology, Singapore University of Technology and Design 1 , Singapore 487372, Singapore

2. Department of Physics, National University of Singapore 2 , Singapore 117542, Singapore

Abstract

We present the theory of out-of-plane (or vertical) electron thermal-field emission from two-dimensional (2D) semimetals. We show that the current–voltage–temperature characteristic is well captured by a universal scaling relation applicable for broad classes of 2D semimetals, including graphene and its few-layer, nodal point semimetal, Dirac semimetal at the verge of topological phase transition, and nodal line semimetal. Here, an important consequence of the universal emission behavior is revealed: In contrast to the common expectation that band topology shall manifest differently in the physical observables, band topologies in two spatial dimension are indistinguishable from each other and bear no special signature in electron emission characteristics. Our findings represent the quantum extension of the universal semiclassical thermionic emission scaling law in 2D materials and provide theoretical foundations for the understanding of electron emission from cathode and charge interface transport for the design of 2D-material-based vacuum nanoelectronics.

Funder

Agency for Science, Technology and Research

Ministry of Education - Singapore

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Over-barrier photoelectron emission with Rashba spin–orbit coupling;Applied Physics Letters;2023-10-16

2. Optoelectronic memory in 2D MoS2 field effect transistor;Journal of Physics and Chemistry of Solids;2023-08

3. Overview of Electron Emission Laws from 2D Materials;2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC);2023-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3