Electron emission in intense electric fields

Author:

Abstract

1. Introduction .—The main features of the phenomenon of the extraction of electrons from cold metals by intense electric fields are well known, and an approximate theory of the effect was first developed by Schottky. More recently the experimental data have been much improved, notably by Millikan and Eyring, and Millikan and Lauritsen. The theory has been considered afresh by O. W. Richardson and by Houston working with Sommerfeld. It seems to us, however, that there is still room for improvement in the theoretical exposition and its correlation with the experiments. Neither O. W. Richardson nor Houston really treat the theory in the simple straightforward way which is now possible in the new mechanics, using the revived electron theory of metals which we owe to Sommerfeld. Again, while Millikan and Lauritsen seem to have established quite definitely the laws of dependence of the emission on the field strength F, they speak of the implications of their result in a way which is hard to justify and might in certain circumstances prove to be definitely misleading. Millikan and Lauritsen show that a plot of log I, where I is the current, against 1/F yields a good straight line whenever the experimental conditions are sufficiently stable. At ordinary temperatures these currents are completely independent of the temperature. The formula for these current is I = C e ─a /F , (1) Which is, of course, indistinguishable from I = CF 2 e ─a /F . (2) Millikan and his associates have also shown that as the higher temperatures, at which ordinary thermionic emission begins, are approached, the strong field emission does become sensitive to temperature and finally blends into the thermionic.

Publisher

The Royal Society

Subject

General Medicine

Cited by 5184 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3