Unification of the breakdown criterion for thermal field emission-driven microdischarges

Author:

Lin Chubin1ORCID,Chen Jiandong1ORCID,Wang Huihui2ORCID,Fu Yangyang13ORCID

Affiliation:

1. Department of Electrical Engineering, Tsinghua University 1 , Beijing 100084, China

2. Department of Chemical Engineering, Tsinghua University 2 , Beijing 100084, China

3. State Key Laboratory of Power System Operation and Control, Department of Electrical Engineering, Tsinghua University 3 , Beijing 100084, China

Abstract

Determining the characteristics of thermal field emission-induced breakdown is essential for various electron emission devices, such as thermionic energy converters. In previous studies, several mathematical models were developed to determine the breakdown voltages driven by field emission under different conditions; however, complicated computations were required to solve the numerical equations. There is still no consensus on the breakdown criterion when the thermal field emission comes into play. In this work, a unified breakdown criterion for the thermal field emission-induced microdischarge is proposed based on the definition of the thermal field emission coefficient γTFE (combined with the thermionic emission coefficient γTE and field emission coefficient γFE) from the emission current. The breakdown voltages scaling with the cathode temperature and gap distance are quantified. Distinct regimes corresponding to different electron emissions and their transitions are examined with the cathode temperature and gap distance tuned across a range of values. The results from this study provide an evaluation of thermal field emission-induced breakdowns and the dominant electron emission mechanisms in distinct regimes can be straightforwardly determined from the present model.

Funder

Tsinghua University

Natural Science Foundation of Beijing Municipality

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3