Direct measurement of tensile mechanical properties of few-layer hexagonal boron nitride (h-BN)

Author:

Zhou Jingzhuo1ORCID,Zhu Mengya1ORCID,Han Ying1ORCID,Zhou Xuefeng2,Wang Shanmin2ORCID,Chen Juzheng1ORCID,Wu Hao1ORCID,Hou Yuan13ORCID,Lu Yang3ORCID

Affiliation:

1. Department of Mechanical Engineering, City University of Hong Kong 1 , Kowloon 999077, Hong Kong, China

2. Department of Physics, Southern University of Science and Technology 2 , Shenzhen, Guangdong 518055, China

3. Department of Mechanical Engineering, The University of Hong Kong 3 , Pokfulam 999077, Hong Kong, China

Abstract

Hexagonal boron nitride (h-BN) has excellent thermal conductivity and dielectric properties, which shows great potential for low-dimensional devices. However, mechanical properties of h-BN have not been comprehensively investigated through experiments. In this work, we conduct in situ direct tensile tests on freestanding single-crystal few-layer h-BN nanosheets with various layer numbers from 3 to 8, with an elaborate sample transfer and characterization protocol. Young's modulus of 573.8 ± 101.4 GPa and a tensile fracture strain up to 3.2% are revealed, which are comparable to its monolayer counterpart. Moreover, we find a tough-to-brittle transition in few-layer h-BN with the increase in layer number, which is attributed the interplay between the van der Waals interaction and in-plane covalent bonding. These findings could open up new possibilities in mechanical research of van der Waals materials and provide guidance for the design of h-BN-based devices and composites.

Funder

Research Grants Council, University Grants Committee

Shenzhen Science and Technology Innovation Program

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3